mirror of
https://github.com/Kbz-8/42_vox.git
synced 2026-01-11 14:43:34 +00:00
201 lines
5.8 KiB
C++
201 lines
5.8 KiB
C++
#include <Noise.h>
|
|
#include <Block.h>
|
|
#include <cstdint>
|
|
#include <random>
|
|
#include <stdexcept>
|
|
|
|
Noise::Noise(const std::uint32_t seed, float frequency, float amplitude, int octaves, float lacunarity, float persistance): seed(std::mt19937(seed)), frequency(frequency), amplitude(amplitude), octaves(octaves), lacunarity(lacunarity), persistance(persistance)
|
|
{
|
|
if (amplitude > 1.0f || amplitude < -1.0f)
|
|
{
|
|
throw std::invalid_argument("Amplitude value must be in [-1;1]");
|
|
}
|
|
InitPermutation();
|
|
}
|
|
|
|
void Noise::InitPermutation(void)
|
|
{
|
|
std::array<int, 256> permutations;
|
|
|
|
for (int i = 0; i < 256; ++i)
|
|
permutations[i] = i;
|
|
std::shuffle(permutations.begin(), permutations.end(), seed);
|
|
for (int i = 0; i < 256; ++i)
|
|
{
|
|
this->perms[i] = permutations[i];
|
|
this->perms[i + 256] = permutations[i];
|
|
}
|
|
for (int val: this->perms)
|
|
{
|
|
std::cout << val << " ";
|
|
}
|
|
std::cout << std::endl;
|
|
std::cout << perlin3D2(0, 0, 0) << std::endl;
|
|
std::cout << perlin3D2(20, 20, 20) << std::endl;
|
|
std::cout << perlin3D(150, 150, 150) << std::endl;
|
|
std::cout << perlin3D(0.078f, 0.4f, 0.2f) << std::endl;
|
|
|
|
}
|
|
|
|
[[nodiscard]] const float Noise::fade(float t)
|
|
{
|
|
|
|
return t * t * t * (t * (t * 6 - 15) + 10);
|
|
}
|
|
|
|
[[nodiscard]] const float Noise::lerp(float a, float b, float t)
|
|
{
|
|
return (a + t * (b - a));
|
|
}
|
|
|
|
const float Noise::perlin2D(float x, float y) {
|
|
int xi = (int)floor(x) & 255;
|
|
int yi = (int)floor(y) & 255;
|
|
|
|
float xf = x - floor(x);
|
|
float yf = y - floor(y);
|
|
|
|
float u = fade(xf);
|
|
float v = fade(yf);
|
|
|
|
int aa = perms[perms[xi] + yi];
|
|
int ab = perms[perms[xi] + yi + 1];
|
|
int ba = perms[perms[xi + 1] + yi];
|
|
int bb = perms[perms[xi + 1] + yi + 1];
|
|
|
|
float x1 = lerp(grad2D(aa, xf, yf),
|
|
grad2D(ba, xf - 1, yf), u);
|
|
float x2 = lerp(grad2D(ab, xf, yf - 1),
|
|
grad2D(bb, xf - 1, yf - 1), u);
|
|
|
|
return ((lerp(x1, x2, v) + 1.0f) / 2.0f);
|
|
}
|
|
|
|
const int Noise::perlin2D2(float x, float y) // Wrapper to apply various mumbo jumbo to get a very worldlike generation
|
|
{
|
|
float total = 0.0f;
|
|
float tmp_freq = frequency;
|
|
float tmp_amp = amplitude;
|
|
float maxValue = 0.0f;
|
|
|
|
for (int i = 0; i < this->octaves; ++i) {
|
|
total += perlin2D(x * tmp_freq, y * tmp_freq) * tmp_amp;
|
|
maxValue += tmp_amp;
|
|
tmp_amp *= persistance;
|
|
tmp_freq *= lacunarity;
|
|
}
|
|
float normalized = total / maxValue;
|
|
normalized = std::clamp(normalized, 0.0f, 1.0f);
|
|
return static_cast<int>(normalized * 255.0f);
|
|
}
|
|
|
|
const int Noise::perlin2D(int x, int y) { // Wrapper to unnormalise input and output
|
|
float scaledX = static_cast<float>(x) * frequency;
|
|
float scaledY = static_cast<float>(y) * frequency;
|
|
return floor(perlin2D2(scaledX, scaledY));
|
|
}
|
|
|
|
|
|
|
|
[[nodiscard]] const float Noise::grad2D(int hash, float x, float y)
|
|
{
|
|
int h = hash & 7; // 8 directions
|
|
float u = h < 4 ? x : y;
|
|
float v = h < 4 ? y : x;
|
|
|
|
return ((h & 1) ? -u : u) + ((h & 2) ? -v : v);
|
|
}
|
|
|
|
[[nodiscard]] const float Noise::grad(int hash, float x, float y, float z) {
|
|
int h = hash & 15; // 16 directions possibles
|
|
float u = h < 8 ? x : y;
|
|
float v = h < 4 ? y : (h == 12 || h == 14 ? x : z);
|
|
return ((h & 1) ? -u : u) + ((h & 2) ? -v : v);
|
|
}
|
|
|
|
|
|
const int Noise::perlin3D(int x, int y, int z)
|
|
{
|
|
float scaledX = static_cast<float>(x) * frequency;
|
|
float scaledY = static_cast<float>(y) * frequency;
|
|
float scaledZ = static_cast<float>(z) * frequency;
|
|
return floor(perlin3D2(scaledX, scaledY, scaledZ));
|
|
}
|
|
|
|
const float Noise::perlin3D(float x, float y, float z) {
|
|
int xi = (int)floor(x) & 255;
|
|
int yi = (int)floor(y) & 255;
|
|
int zi = (int)floor(z) & 255;
|
|
|
|
float xf = x - floor(x);
|
|
float yf = y - floor(y);
|
|
float zf = z - floor(z);
|
|
|
|
float u = fade(xf);
|
|
float v = fade(yf);
|
|
float w = fade(zf);
|
|
|
|
int aaa = perms[perms[perms[xi] + yi] + zi];
|
|
int aba = perms[perms[perms[xi] + yi + 1] + zi];
|
|
int aab = perms[perms[perms[xi] + yi] + zi + 1];
|
|
int abb = perms[perms[perms[xi] + yi + 1] + zi + 1];
|
|
int baa = perms[perms[perms[xi + 1] + yi] + zi];
|
|
int bba = perms[perms[perms[xi + 1] + yi + 1] + zi];
|
|
int bab = perms[perms[perms[xi + 1] + yi] + zi + 1];
|
|
int bbb = perms[perms[perms[xi + 1] + yi + 1] + zi + 1];
|
|
|
|
float x1, x2, y1, y2;
|
|
x1 = lerp(grad(aaa, xf, yf, zf),
|
|
grad(baa, xf - 1, yf, zf), u);
|
|
x2 = lerp(grad(aba, xf, yf - 1, zf),
|
|
grad(bba, xf - 1, yf - 1, zf), u);
|
|
y1 = lerp(x1, x2, v);
|
|
|
|
x1 = lerp(grad(aab, xf, yf, zf - 1),
|
|
grad(bab, xf - 1, yf, zf - 1), u);
|
|
x2 = lerp(grad(abb, xf, yf - 1, zf - 1),
|
|
grad(bbb, xf - 1, yf - 1, zf - 1), u);
|
|
y2 = lerp(x1, x2, v);
|
|
|
|
return ((lerp(y1, y2, w) + 1.0f) / 2.0f) * amplitude;
|
|
}
|
|
|
|
const int Noise::perlin3D2(float x, float y, float z)
|
|
{
|
|
float total = 0.0f;
|
|
float tmp_freq = frequency;
|
|
float tmp_amp = amplitude;
|
|
float maxValue = 0.0f;
|
|
|
|
for (int i = 0; i < this->octaves; ++i) {
|
|
total += perlin3D(x * tmp_freq, y * tmp_freq, z * tmp_freq) * tmp_amp;
|
|
maxValue += tmp_amp;
|
|
tmp_amp *= persistance;
|
|
tmp_freq *= lacunarity;
|
|
}
|
|
float normalized = total / maxValue;
|
|
normalized = std::clamp(normalized, 0.0f, 1.0f);
|
|
return static_cast<int>(normalized * 255.0f);
|
|
}
|
|
|
|
|
|
[[nodiscard]] std::array<std::uint32_t, CHUNK_SIZE.y> Noise::GetHeight(Scop::Vec2i pos)
|
|
{
|
|
std::array<std::uint32_t, CHUNK_SIZE.y> data;
|
|
std::memset(data.data(), static_cast<std::uint32_t>(BlockType::Air), data.size() * sizeof(std::uint32_t));
|
|
|
|
|
|
//std::uint32_t height = std::abs(std::sin((float)pos.x / 20.0f) * std::cos((float)pos.y / 20.0f) * 60.0f) + 1;
|
|
|
|
std::uint32_t height = perlin2D(pos.x, pos.y);
|
|
// Must not exceed CHUNK_SIZE.y
|
|
for(std::uint32_t y = 0; y < std::min(height, CHUNK_SIZE.y); y++)
|
|
{
|
|
if(y > std::min(height, CHUNK_SIZE.y) - 2)
|
|
data[y] = static_cast<std::uint32_t>(BlockType::Grass);
|
|
else
|
|
data[y] = static_cast<std::uint32_t>(BlockType::Stone);
|
|
}
|
|
return data;
|
|
}
|