Files
42_vox/Application/Chunk.cpp
2025-06-03 21:57:47 +02:00

400 lines
16 KiB
C++

#include <Chunk.h>
#include <Block.h>
#include <World.h>
#include <ScopCore.h>
#define POS_TO_INDEX(posx, posz) (posx * CHUNK_SIZE.x + posz)
constexpr Scop::Vec2ui SPRITE_SIZE = { 16, 16 };
constexpr Scop::Vec2ui ATLAS_SIZE = { 64, 64 };
constexpr Scop::Vec2f SPRITE_UNIT = Scop::Vec2f(SPRITE_SIZE) / Scop::Vec2f(ATLAS_SIZE);
constexpr std::array<std::array<Scop::Vec2ui, 3>, BlocksCount> BLOCKS_TO_ATLAS = {
// TOP BOTTOM SIDE
std::array<Scop::Vec2ui, 3>{ Scop::Vec2ui{ 0, 0 }, Scop::Vec2ui{ 0, 0 }, Scop::Vec2ui{ 0, 0 } }, // Air
std::array<Scop::Vec2ui, 3>{ Scop::Vec2ui{ 1, 1 }, Scop::Vec2ui{ 1, 1 }, Scop::Vec2ui{ 1, 1 } }, // Water
std::array<Scop::Vec2ui, 3>{ Scop::Vec2ui{ 0, 0 }, Scop::Vec2ui{ 0, 0 }, Scop::Vec2ui{ 0, 0 } }, // Dirt
std::array<Scop::Vec2ui, 3>{ Scop::Vec2ui{ 1, 0 }, Scop::Vec2ui{ 1, 0 }, Scop::Vec2ui{ 1, 0 } }, // Stone
std::array<Scop::Vec2ui, 3>{ Scop::Vec2ui{ 2, 0 }, Scop::Vec2ui{ 0, 0 }, Scop::Vec2ui{ 3, 0 } }, // Grass
std::array<Scop::Vec2ui, 3>{ Scop::Vec2ui{ 0, 1 }, Scop::Vec2ui{ 0, 1 }, Scop::Vec2ui{ 0, 1 } }, // Sand
std::array<Scop::Vec2ui, 3>{ Scop::Vec2ui{ 2, 1 }, Scop::Vec2ui{ 2, 1 }, Scop::Vec2ui{ 2, 1 } }, // Snow
std::array<Scop::Vec2ui, 3>{ Scop::Vec2ui{ 2, 1 }, Scop::Vec2ui{ 0, 0 }, Scop::Vec2ui{ 3, 1 } }, // SnowyGrass
std::array<Scop::Vec2ui, 3>{ Scop::Vec2ui{ 0, 2 }, Scop::Vec2ui{ 0, 2 }, Scop::Vec2ui{ 0, 2 } }, // Cactus
std::array<Scop::Vec2ui, 3>{ Scop::Vec2ui{ 1, 2 }, Scop::Vec2ui{ 1, 2 }, Scop::Vec2ui{ 1, 2 } }, // Ice
std::array<Scop::Vec2ui, 3>{ Scop::Vec2ui{ 2, 2 }, Scop::Vec2ui{ 2, 2 }, Scop::Vec2ui{ 3, 2 } }, // SandStone
};
enum class Side : std::uint8_t
{
Top = 0,
Bottom,
Side
};
struct WaterData
{
double time;
};
Scop::Vec2f GetAtlasOffset(BlockType type, Side side)
{
Scop::Vec2ui pos = BLOCKS_TO_ATLAS[static_cast<std::uint32_t>(type)][static_cast<std::uint8_t>(side)];
return Scop::Vec2f(Scop::Vec2f(pos.x, SPRITE_SIZE.y - pos.y - 1) * SPRITE_UNIT);
}
Chunk::Chunk(World& world, Scop::Vec2i offset) : m_offset(offset), m_position(std::move(offset) * Scop::Vec2i{ CHUNK_SIZE.x, CHUNK_SIZE.z }), m_world(world)
{
}
void Chunk::GenerateChunk()
{
if(p_actor)
return;
for(auto& y: m_data)
{
std::unique_lock guard(m_data_mutex);
std::memset(y.data(), 0, y.size() * sizeof(std::uint32_t));
}
for(std::uint32_t x = 0; x < CHUNK_SIZE.x; x++)
{
for(std::uint32_t z = 0; z < CHUNK_SIZE.z; z++)
{
std::unique_lock guard(m_data_mutex);
std::memcpy(m_data[POS_TO_INDEX(x, z)].data(), m_world.GetNoiseGenerator().GetBlocks(m_position + Scop::Vec2i(x, z)).data(), CHUNK_SIZE.y * sizeof(std::uint32_t));
}
}
}
void Chunk::GenerateMesh()
{
if(p_actor || p_water_actor)
return;
std::uint32_t mesh_offset = 0;
std::uint32_t water_offset = 0;
m_mesh_data.reserve(CHUNK_VOLUME);
m_mesh_index_data.reserve(CHUNK_VOLUME * 4);
m_water_mesh_data.reserve(CHUNK_VOLUME);
m_water_mesh_index_data.reserve(CHUNK_VOLUME * 4);
for(std::int32_t x = 0; x < CHUNK_SIZE.x; x++)
{
for(std::int32_t z = 0; z < CHUNK_SIZE.z; z++)
{
for(std::int32_t y = 0; y < CHUNK_SIZE.y; y++)
{
BlockType type = static_cast<BlockType>(GetBlock(Scop::Vec3i(x, y, z)));
if(type == BlockType::Air)
continue;
bool is_water = (type == BlockType::Water);
std::vector<Scop::Vertex>& mesh_data = (is_water ? m_water_mesh_data : m_mesh_data);
std::vector<std::uint32_t>& index_data = (is_water ? m_water_mesh_index_data : m_mesh_index_data);
std::uint32_t& offset = (is_water ? water_offset : mesh_offset);
Scop::Vec4f base_color = is_water ? Scop::Vec4f{ 0.5f, 0.2f, 0.1f, 0.95f } : Scop::Vec4f{ 1.0f };
std::uint32_t invalid_limit = is_water ? static_cast<std::uint32_t>(BlockType::Air) : static_cast<std::uint32_t>(BlockType::Water);
if(GetBlock(Scop::Vec3i(x, y, z + 1)) <= invalid_limit)
{
index_data.push_back(offset + 0);
index_data.push_back(offset + 2);
index_data.push_back(offset + 3);
index_data.push_back(offset + 0);
index_data.push_back(offset + 3);
index_data.push_back(offset + 1);
for(std::uint32_t i = 0; i < 4; i++)
{
Scop::Vec4f vertex_color;
if(!is_water)
{
int u = static_cast<int>(BLOCK_MESH[i].position.x);
int v = static_cast<int>(BLOCK_MESH[i].position.y);
bool occ1 = (GetBlock(Scop::Vec3i(x + (u == 0 ? -1 : 1), y + v, z + 1)) != static_cast<std::uint32_t>(BlockType::Air));
bool occ2 = (GetBlock(Scop::Vec3i(x + u, y + (v == 0 ? -1 : 1), z + 1)) != static_cast<std::uint32_t>(BlockType::Air));
bool occ3 = (GetBlock(Scop::Vec3i(x + (u == 0 ? -1 : 1), y + (v == 0 ? -1 : 1), z + 1)) != static_cast<std::uint32_t>(BlockType::Air));
int occ_count = (occ1 ? 1 : 0) + (occ2 ? 1 : 0) + (occ3 ? 1 : 0);
float ao = 1.0f - (occ_count * 0.2f);
vertex_color = Scop::Vec4f(Scop::Vec3f(base_color) * ao, 1.0f);
}
else
vertex_color = base_color;
Scop::Vec4f vertex_pos = BLOCK_MESH[i].position + Scop::Vec3f(x, y, z);
if(is_water && (i == 1 || i == 3) && GetBlock(Scop::Vec3i(x, y + 1, z)) != static_cast<std::uint32_t>(BlockType::Water))
vertex_pos.w = 0.0;
Scop::Vec2f uv = GetAtlasOffset(type, Side::Side) + (Scop::Vec2f(SPRITE_UNIT) * BLOCK_MESH[i].uv);
mesh_data.push_back(Scop::Vertex(vertex_pos, vertex_color, BLOCK_MESH[i].normal, uv));
}
offset += 4;
}
if(GetBlock(Scop::Vec3i(x, y, z - 1)) <= invalid_limit)
{
index_data.push_back(offset + 2);
index_data.push_back(offset + 3);
index_data.push_back(offset + 1);
index_data.push_back(offset + 2);
index_data.push_back(offset + 1);
index_data.push_back(offset + 0);
for(std::uint32_t i = 4; i < 8; i++)
{
Scop::Vec4f vertex_color;
if(!is_water)
{
int local_index = i - 4;
int u = static_cast<int>(BLOCK_MESH[i].position.x);
int v = static_cast<int>(BLOCK_MESH[i].position.y);
bool occ1 = (GetBlock(Scop::Vec3i(x + (u == 0 ? -1 : 1), y + v, z - 1)) != static_cast<std::uint32_t>(BlockType::Air));
bool occ2 = (GetBlock(Scop::Vec3i(x + u, y + (v == 0 ? -1 : 1), z - 1)) != static_cast<std::uint32_t>(BlockType::Air));
bool occ3 = (GetBlock(Scop::Vec3i(x + (u == 0 ? -1 : 1), y + (v == 0 ? -1 : 1), z - 1)) != static_cast<std::uint32_t>(BlockType::Air));
int occ_count = (occ1 ? 1 : 0) + (occ2 ? 1 : 0) + (occ3 ? 1 : 0);
float ao = 1.0f - (occ_count * 0.2f);
vertex_color = Scop::Vec4f(Scop::Vec3f(base_color) * ao, 1.0f);
}
else
vertex_color = base_color;
Scop::Vec4f vertex_pos = BLOCK_MESH[i].position + Scop::Vec3f(x, y, z);
if(is_water && (i == 5 || i == 7) && GetBlock(Scop::Vec3i(x, y + 1, z)) != static_cast<std::uint32_t>(BlockType::Water))
vertex_pos.w = 0.0;
Scop::Vec2f uv = GetAtlasOffset(type, Side::Side) + (Scop::Vec2f(SPRITE_UNIT) * BLOCK_MESH[i].uv);
mesh_data.push_back(Scop::Vertex(vertex_pos, vertex_color, BLOCK_MESH[i].normal, uv));
}
offset += 4;
}
if(std::uint32_t value = GetBlock(Scop::Vec3i(x, y + 1, z)); !is_water ? value <= invalid_limit : value != static_cast<std::uint32_t>(BlockType::Water)) // We want top face water even under blocks
{
index_data.push_back(offset + 1);
index_data.push_back(offset + 0);
index_data.push_back(offset + 2);
index_data.push_back(offset + 1);
index_data.push_back(offset + 2);
index_data.push_back(offset + 3);
for(std::uint32_t i = 8; i < 12; i++)
{
Scop::Vec4f vertex_color;
if(!is_water)
{
int local_index = i - 8;
int u = static_cast<int>(BLOCK_MESH[i].position.x);
int v = static_cast<int>(BLOCK_MESH[i].position.z);
bool occ1 = (GetBlock(Scop::Vec3i(x + (u == 0 ? -1 : 1), y + 1, z + v)) != static_cast<std::uint32_t>(BlockType::Air));
bool occ2 = (GetBlock(Scop::Vec3i(x + u, y + 1, z + (v == 0 ? -1 : 1))) != static_cast<std::uint32_t>(BlockType::Air));
bool occ3 = (GetBlock(Scop::Vec3i(x + (u == 0 ? -1 : 1), y + 1, z + (v == 0 ? -1 : 1))) != static_cast<std::uint32_t>(BlockType::Air));
int occ_count = (occ1 ? 1 : 0) + (occ2 ? 1 : 0) + (occ3 ? 1 : 0);
float ao = 1.0f - (occ_count * 0.2f);
vertex_color = Scop::Vec4f(Scop::Vec3f(base_color) * ao, 1.0f);
}
else
vertex_color = base_color;
Scop::Vec4f vertex_pos = BLOCK_MESH[i].position + Scop::Vec3f(x, y, z);
if(is_water)
vertex_pos.w = 0.0;
Scop::Vec2f uv = GetAtlasOffset(type, Side::Top) + (Scop::Vec2f(SPRITE_UNIT) * BLOCK_MESH[i].uv);
mesh_data.push_back(Scop::Vertex(vertex_pos, vertex_color, BLOCK_MESH[i].normal, uv));
}
offset += 4;
}
if(GetBlock(Scop::Vec3i(x, y - 1, z)) <= invalid_limit)
{
index_data.push_back(offset + 3);
index_data.push_back(offset + 1);
index_data.push_back(offset + 0);
index_data.push_back(offset + 3);
index_data.push_back(offset + 0);
index_data.push_back(offset + 2);
for(std::uint32_t i = 12; i < 16; i++)
{
Scop::Vec4f vertex_color;
if(!is_water)
{
int local_index = i - 12;
int u = static_cast<int>(BLOCK_MESH[i].position.x);
int v = static_cast<int>(BLOCK_MESH[i].position.z);
bool occ1 = (GetBlock(Scop::Vec3i(x + (u == 0 ? -1 : 1), y - 1, z + v)) != static_cast<std::uint32_t>(BlockType::Air));
bool occ2 = (GetBlock(Scop::Vec3i(x + u, y - 1, z + (v == 0 ? -1 : 1))) != static_cast<std::uint32_t>(BlockType::Air));
bool occ3 = (GetBlock(Scop::Vec3i(x + (u == 0 ? -1 : 1), y - 1,z + (v == 0 ? -1 : 1))) != static_cast<std::uint32_t>(BlockType::Air));
int occ_count = (occ1 ? 1 : 0) + (occ2 ? 1 : 0) + (occ3 ? 1 : 0);
float ao = 1.0f - (occ_count * 0.2f);
vertex_color = Scop::Vec4f(Scop::Vec3f(base_color) * ao, 1.0f);
}
else
vertex_color = base_color;
Scop::Vec4f vertex_pos = BLOCK_MESH[i].position + Scop::Vec3f(x, y, z);
Scop::Vec2f uv = GetAtlasOffset(type, Side::Bottom) + (Scop::Vec2f(SPRITE_UNIT) * BLOCK_MESH[i].uv);
mesh_data.push_back(Scop::Vertex(vertex_pos, vertex_color, BLOCK_MESH[i].normal, uv));
}
offset += 4;
}
if(GetBlock(Scop::Vec3i(x + 1, y, z)) <= invalid_limit)
{
index_data.push_back(offset + 2);
index_data.push_back(offset + 3);
index_data.push_back(offset + 1);
index_data.push_back(offset + 2);
index_data.push_back(offset + 1);
index_data.push_back(offset + 0);
for(std::uint32_t i = 16; i < 20; i++)
{
Scop::Vec4f vertex_color;
if(!is_water)
{
int local_index = i - 16;
int u = static_cast<int>(BLOCK_MESH[i].position.z);
int v = static_cast<int>(BLOCK_MESH[i].position.y);
bool occ1 = (GetBlock(Scop::Vec3i(x + 1, y + v, z + (u == 0 ? -1 : 1))) != static_cast<std::uint32_t>(BlockType::Air));
bool occ2 = (GetBlock(Scop::Vec3i(x + 1, y + (v == 0 ? -1 : 1), z + u)) != static_cast<std::uint32_t>(BlockType::Air));
bool occ3 = (GetBlock(Scop::Vec3i(x + 1, y + (v == 0 ? -1 : 1), z + (u == 0 ? -1 : 1))) != static_cast<std::uint32_t>(BlockType::Air));
int occ_count = (occ1 ? 1 : 0) + (occ2 ? 1 : 0) + (occ3 ? 1 : 0);
float ao = 1.0f - (occ_count * 0.2f);
vertex_color = Scop::Vec4f(Scop::Vec3f(base_color) * ao, 1.0f);
}
else
vertex_color = base_color;
Scop::Vec4f vertex_pos = BLOCK_MESH[i].position + Scop::Vec3f(x, y, z);
if(is_water && (i == 17 || i == 19) && GetBlock(Scop::Vec3i(x, y + 1, z)) != static_cast<std::uint32_t>(BlockType::Water))
vertex_pos.w = 0.0;
Scop::Vec2f uv = GetAtlasOffset(type, Side::Side) + (Scop::Vec2f(SPRITE_UNIT) * BLOCK_MESH[i].uv);
mesh_data.push_back(Scop::Vertex(vertex_pos, vertex_color, BLOCK_MESH[i].normal, uv));
}
offset += 4;
}
if(GetBlock(Scop::Vec3i(x - 1, y, z)) <= invalid_limit)
{
index_data.push_back(offset + 0);
index_data.push_back(offset + 2);
index_data.push_back(offset + 3);
index_data.push_back(offset + 0);
index_data.push_back(offset + 3);
index_data.push_back(offset + 1);
for(std::uint32_t i = 20; i < 24; i++)
{
Scop::Vec4f vertex_color;
if(!is_water)
{
int local_index = i - 20;
int u = static_cast<int>(BLOCK_MESH[i].position.z);
int v = static_cast<int>(BLOCK_MESH[i].position.y);
bool occ1 = (GetBlock(Scop::Vec3i(x - 1, y + v, z + (u == 0 ? -1 : 1))) != static_cast<std::uint32_t>(BlockType::Air));
bool occ2 = (GetBlock(Scop::Vec3i(x - 1, y + (v == 0 ? -1 : 1), z + u)) != static_cast<std::uint32_t>(BlockType::Air));
bool occ3 = (GetBlock(Scop::Vec3i(x - 1, y + (v == 0 ? -1 : 1), z + (u == 0 ? -1 : 1))) != static_cast<std::uint32_t>(BlockType::Air));
int occ_count = (occ1 ? 1 : 0) + (occ2 ? 1 : 0) + (occ3 ? 1 : 0);
float ao = 1.0f - (occ_count * 0.2f);
vertex_color = Scop::Vec4f(Scop::Vec3f(base_color) * ao, 1.0f);
}
else
vertex_color = base_color;
Scop::Vec4f vertex_pos = BLOCK_MESH[i].position + Scop::Vec3f(x, y, z);
if(is_water && (i == 21 || i == 23) && GetBlock(Scop::Vec3i(x, y + 1, z)) != static_cast<std::uint32_t>(BlockType::Water))
vertex_pos.w = 0.0;
Scop::Vec2f uv = GetAtlasOffset(type, Side::Side) + (Scop::Vec2f(SPRITE_UNIT) * BLOCK_MESH[i].uv);
mesh_data.push_back(Scop::Vertex(vertex_pos, vertex_color, BLOCK_MESH[i].normal, uv));
}
offset += 4;
}
}
}
}
}
void Chunk::UploadMesh()
{
if(!p_actor && !m_mesh_data.empty() && !m_mesh_index_data.empty())
{
std::shared_ptr<Scop::Mesh> mesh = std::make_shared<Scop::Mesh>();
mesh->AddSubMesh({ std::move(m_mesh_data), std::move(m_mesh_index_data) });
Scop::Actor& actor = m_world.GetScene().CreateActor(mesh);
actor.GetModelRef().SetMaterial(m_world.GetBlockMaterial(), 0);
actor.SetPosition(Scop::Vec3f(m_position.x, 0.0f, m_position.y));
p_actor = &actor;
}
if(!p_water_actor && !m_water_mesh_data.empty() && !m_water_mesh_index_data.empty())
{
std::shared_ptr<Scop::Mesh> mesh = std::make_shared<Scop::Mesh>();
mesh->AddSubMesh({ std::move(m_water_mesh_data), std::move(m_water_mesh_index_data) });
Scop::Actor& actor = m_world.GetScene().CreateActor(mesh);
actor.GetModelRef().SetMaterial(m_world.GetBlockMaterial(), 0);
actor.SetPosition(Scop::Vec3f(m_position.x, 0.0f, m_position.y));
actor.SetIsOpaque(false);
actor.SetCustomPipeline({
.pipeline = m_world.GetWaterPipeline(),
.data{ sizeof(WaterData) }
});
std::memset(actor.GetCustomPipeline()->data.GetData(), 0, actor.GetCustomPipeline()->data.GetSize());
auto object_update = [](Scop::NonOwningPtr<Scop::Scene> scene, Scop::NonOwningPtr<Scop::Actor> actor, Scop::Inputs& input, float delta)
{
WaterData* data = actor->GetCustomPipeline()->data.GetDataAs<WaterData>();
data->time = static_cast<double>(SDL_GetTicks64());
};
using actor_hook = std::function<void(Scop::NonOwningPtr<Scop::Actor>)>;
actor.AttachScript(std::make_shared<Scop::NativeActorScript>(actor_hook{}, object_update, actor_hook{}));
p_water_actor = &actor;
}
}
std::uint32_t Chunk::GetBlock(Scop::Vec3i position) const noexcept
{
if(position.y < 0 || position.y >= CHUNK_SIZE.y) [[unlikely]] // No chunk under or above
return static_cast<std::uint32_t>(BlockType::Dirt);
if(position.x < 0) [[unlikely]]
{
Scop::NonOwningPtr<const Chunk> neighbour = m_world.GetChunk(Scop::Vec2i{ m_offset.x - 1, m_offset.y });
return neighbour ? neighbour->GetBlock(Scop::Vec3i(CHUNK_SIZE.x - 1, position.y, position.z)) : static_cast<std::uint32_t>(BlockType::Dirt);
}
if(position.x >= CHUNK_SIZE.x) [[unlikely]]
{
Scop::NonOwningPtr<const Chunk> neighbour = m_world.GetChunk(Scop::Vec2i{ m_offset.x + 1, m_offset.y });
return neighbour ? neighbour->GetBlock(Scop::Vec3i(0, position.y, position.z)) : static_cast<std::uint32_t>(BlockType::Dirt);
}
if(position.z < 0) [[unlikely]]
{
Scop::NonOwningPtr<const Chunk> neighbour = m_world.GetChunk(Scop::Vec2i{ m_offset.x, m_offset.y - 1 });
return neighbour ? neighbour->GetBlock(Scop::Vec3i(position.x, position.y, CHUNK_SIZE.x - 1)) : static_cast<std::uint32_t>(BlockType::Dirt);
}
if(position.z >= CHUNK_SIZE.z) [[unlikely]]
{
Scop::NonOwningPtr<const Chunk> neighbour = m_world.GetChunk(Scop::Vec2i{ m_offset.x, m_offset.y + 1 });
return neighbour ? neighbour->GetBlock(Scop::Vec3i(position.x, position.y, 0)) : static_cast<std::uint32_t>(BlockType::Dirt);
}
std::shared_lock guard(m_data_mutex);
return m_data[POS_TO_INDEX(position.x, position.z)][position.y];
}